

New Language Features in

Visual FoxPro 7

Session Number

Tamar E. Granor, Ph.D.

Voice: 215-635-1958

Email: tamar@thegranors.com

Overview
Every new version of VFP introduces changes to the programming language and VFP 7 is no

exception. This session highlights new and changed commands, functions, properties, events and

methods.

The changes in VFP 7 affect many different areas from string manipulation to building COM

servers to data handling to the Interactive Development Environment (IDE) to just about every

corner of the language. A number of the changes provide features that have been requested by the

Visual FoxPro community, some of them for many years.

This session assumes familiarity with Visual FoxPro 6.0.

What's Not in this Session
This session doesn't cover some of the major new language features in VFP 7 because they're big

enough to require entire sessions or are covered in other sessions. In particular, VFP 7 adds

events to the Database Container, definitely too large a topic to cover here. A number of new

functions and changes to existing functions are designed to improve VFP's position in building

COM Servers; again, this topic needs more room than would be available here. Finally, some

new language elements support changes to the IDE; they're covered only lightly in this session.

In addition, these notes are not meant to cover every single changed item, but rather to look at the

major changes to the language.

String Handling
Working with strings has become increasingly important in the last few years, thanks to the

World Wide Web. Since HTML and XML are just text with tags, the ability to manipulate text

rapidly and easily has taken on new significance. FoxPro has always had good string-handling

tools, but with VFP 7, they continue to improve.

Textmerge improvements

FoxPro's textmerge facility is one of those tools whose time came and went and has now come

back. It was added in FoxPro 2.0 to make code generation easier for GENSCRN and

GENMENU, the screen and menu generating programs.

Textmerge combines low-level file handling with runtime evaluation of expressions and type

conversion to provide an easy mechanism for generating complex text. In VFP 7, textmerge has

been enhanced in several ways.

First, it's now possible to send textmerge output to a variable rather than a file. SET

TEXTMERGE TO has a new MEMVAR clause that lets you specify a variable as the output

destination, like this:

SET TEXTMERGE TO MEMVAR cContents

In addition, the TEXT … ENDTEXT command has been enhanced to increase its textmerge

capabilities. The TEXT line now has several options, where in previous version it just said

TEXT. Here's the new syntax:

TEXT [TO VarName [ADDITIVE] [TEXTMERGE] [NOSHOW]]

 Text lines

ENDTEXT

The new syntax lets you perform textmerge to a variable with just a TEXT … ENDTEXT

sequence, without using SET TEXTMERGE. For example, this block of code sends a string plus

the current date to the variable cDate, without echoing it to the screen:

TEXT TO cDate TEXTMERGE NOSHOW

Today is <<DATE()>>

ENDTEXT

The biggest change on the textmerge front is the addition of a new TextMerge() function that

accepts an expression to be evaluated, a flag that indicates whether the evaluation is recursive

and a set of textmerge delimiters, and returns the result of the evaluation. This line is equivalent

to the example above:

cDate = TextMerge("Today is <<Date()>>")

The form TextMerge.SCX in the conference materials demonstrates all three ways of merging

text.

Parsing strings

A new function, StrExtract(), has been added to aid in breaking strings into their component

parts. Although this function was probably added to simplify handling of XML, it has uses in

other processing as well.

The syntax for StrExtract() is:

cResult = StrExtract(cSource, cBeginningDelimiter [, cEndingDelimiter

 [, nOccurrence [, nFlags]]])

The key aspect of this function is that the beginning and ending delimiters can be multiple

characters. So you can apply the function to an XML string, passing beginning and ending tags.

For example,

cXML = "<customer><custid>37</custid>" +

 "<name>Fred's Auto Parts</name></customer>"

?StrExtract(cXML, "<name>", "</name>")

displays:

Fred's Auto Parts

You can extract any occurrence between the specified delimiters by passing the optional

nOccurrence parameter. The nFlags parameter is a sum of values. Add 1 to flag to make the

search case-insensitive. Add 2 to the flag if the ending delimiter is optional – in that case, the

function returns everything from the beginning delimiter to the end of the string. (That's also

what happens when the ending delimiter is omitted.)

For example, using the cXML string defined above:

?StrExtract(cXML, "<NAME>", </NAME>")

returns the empty string, while:

?StrExtract(cXML, "<NAME>", </NAME>",1,1)

returns:

Fred's Auto Parts

Miscellaneous string changes

In addition to beefing up the textmerge facility, the VFP team migrated a couple of string

functions from FoxTools, and enhanced several others. The result is that working with text in

VFP 7 is even easier than it was in VFP 6.

The FoxTools' promotions are GetWordCount() and GetWordNum(), though they don't have

those names in FoxTools. They do what their new names suggest: return the number of words

and the specified word in their first parameter. Each accepts an optional parameter to indicate

where one word ends and another begins – if it's omitted, a space, tab or return separates words.

One way to use these two functions together is to output the words in a string one per line.

Assuming cInputString contains the string in question, the code looks like this:

LOCAL nWordCount, nWordNum

nWordCount = GetWordCount(cInputString)

FOR nWordNum = 1 TO nWordCount

 ? GetWordNum(cInputString, nWordNum)

ENDFOR

I compared this code to equivalent code using STRTRAN() and ALINES() to pull out the words

and to traditional Xbase code using AT() and SUBSTR() and found that, while the new functions

were quite fast on small strings, as soon as cInputString got big, the STRTRAN()/ALINES()

combination was a much better choice. Here's the alternative, faster, code:

LOCAL nWordCount, cModString

LOCAL ARRAY aWords[1]

cModString = STRTRAN(STRTRAN(cInputString," ",CHR(13)), ;

 CHR(9),CHR(13))

nWordCount = ALINES(aWords,cModString)

FOR nWordNum = 1 TO nWordCount

 ?aWords[nWordNum]

ENDFOR

In fact, the fastest way to do this parsing task in VFP 7 uses just ALINES() because this function

has a new parameter to specify additional characters that indicate the end of the line (other than

CHR(13) and CHR(10)). Here's the enhanced syntax for ALINES():

nNumberOfLines = ALINES(aArrayOfLines, cExpression [, lTrim]

 [, cParseChars1, … , cParseCharsn])

So, the code to output each word in a string onto a separate line can be rewritten one more time

as:

LOCAL nWordCount

LOCAL ARRAY aWords[1]

nWordCount = ALINES(aWords,cInputString, " ", CHR(9))

FOR nWordNum = 1 TO nWordCount

 ?aWords[nWordNum]

ENDFOR

The form WordsOut.SCX in the conference materials runs timing tests on all four approaches to

parsing words from a string.

Note that each separator (cParseCharsn) can contain multiple characters, so you can parse based

on sequences of characters, not just single characters. It's also worth noting that the separators are

processed in the order in which they occur in the function call.

STRTRAN() also has been changed in this version. It has a new flags parameter that indicates

whether the search and replacement it performs should be case-sensitive or not. If the parameter

is entirely omitted, the search is case-sensitive, as in older versions of FoxPro. When included,

the parameter has three possible values:

0-case-sensitive search

1-case-insensitive search with no case change in the replacement string

3-case-insensitive search with case change in the replacement string

(Note that 2 is an acceptable value for this parameter, but gives the same results as 0.)

For example, without the new parameter, this call:

? STRTRAN("Now is the time", "now", "then")

returns the original string "Now is the time". With the new parameter, we can call the function

like this:

? STRTRAN("Now is the time", "now", "then", -1, -1, 1)

and it returns:

"then is the time"

To maintain the original case, make this call:

? STRTRAN("Now is the time", "now", "then", -1, -1, 3)

and you see:

"Then is the time"

Note that you can't combine case-sensitive search with changing case in the replacement string.

Data-Related Changes
In addition to the new database events, a number of commands and functions related to data have

been changed in VFP 7. Most of the changes are in response to requests from the developer

community. All of them make it easier to write solid code.

First, the IN clause has been added to a number of the Xbase commands that didn't already have

it. They include BLANK, SET FILTER, PACK, RECALL and CALCULATE. Using the IN

clause with these and other Xbase commands means that you don't have to worry about setting

the right work area before issuing the command. The IN clause specifies the work area for the

individual command and doesn't affect any other commands.

Two changes affect the SQL SELECT command. First, there's a new READWRITE keyword for

the INTO CURSOR clause. This keyword lets you create a cursor that can be modified,

answering perhaps one of the most common wishes of FoxPro developers ever since SELECT

was added in FoxPro 2.0.

When you issue SELECT … INTO CURSOR, the newly created cursor is read-only. There are

some tricks you can do to make it read-write. But the new READWRITE clause makes those

tricks obsolete. Cursors created with SELECT … INTO CURSOR name READWRITE can be

modified. (Of course, the original data on which the cursor is based isn't affect by changes to the

cursor.)

Here's an example. This query (which uses data from the example TasTrade database) creates a

read-only cursor:

SELECT First_Name, Last_Name ;

 FROM (_SAMPLES + "TasTrade\Data\Employee") ;

 INTO CURSOR EmployeeNames

Add the READWRITE keyword, and the cursor can be changed:

SELECT First_Name, Last_Name ;

 FROM (_SAMPLES + "TasTrade\Data\Employee") ;

 INTO CURSOR EmployeeNames READWRITE

It's also worth noting that, in some situations, the first version of the query results in a filter of the

original table unless you add the NOFILTER keyword. When you use the READWRITE

keyword, you can omit NOFILTER since a read-write cursor cannot be a filtered version of the

original table.

The SYS(3054) function that lets you check the optimization of queries has some new

parameters in VFP 7. Pass 2 or 12 for the second parameter to include the query itself in the

output. This is really handy when you're testing a number of queries. SYS(3054, 2) turns on filter

optimization information with the query displayed, as well; in other words, it's the same as

SYS(3054, 1) with the addition of the query display. SYS(3054, 12) is SYS(3054, 11) plus the

query display – it shows filter and join optimization.

This function has a new parameter as well. You can pass it the name of a variable and the

optimization information is stored in that variable rather than being displayed. For example:

SYS(3054, 2, "cOptim")

SELECT Last_Name, First_Name ;

 FROM _SAMPLES + "TasTrade\Data\Employee" ;

 WHERE Country = "UK" ;

 INTO CURSOR Junk

The variable ends up with these contents:

SELECT Last_Name, First_Name FROM _SAMPLES + "TasTrade\Data\Employee"

WHERE Country = "UK" INTO CURSOR Junk

Rushmore optimization level for table employee: none

Check out the form SYS3054.SCX in the conference materials for additional examples.

Two changes help you get a better picture of what's going on with your data. First, the

IsReadOnly() function has been enhanced to work on databases as well as tables. You can test

only the current database. To do so, pass 0 to the function like this:

?IsReadOnly(0)

If no database is open and current, you get an error.

The new ATagInfo() function is one that FoxPro developers have long asked for. It puts

information about a table's indexes into an array with one row for each tag. There are columns for

the tag name, tag type (primary, candidate, regular or unique), key, filter, ascending/descending

status and collation sequence.

Like the other functions that put data into arrays, ATagInfo() creates the array you pass it or

resizes it, if necessary. It returns the number of rows in the resulting array. This example runs the

function on the Employee table from the TasTrade database and shows some of the results.

? ATAGINFO(aEmplTags)

LIST MEMORY like aEmplTags

AEMPLTAGS Pub A

 (1, 1) C "GROUP_ID"

 (1, 2) C "REGULAR"

 (1, 3) C "GROUP_ID"

 (1, 4) C ""

 (1, 5) C "ASCENDING"

 (1, 6) C "MACHINE"

 (2, 1) C "LAST_NAME"

 (2, 2) C "REGULAR"

 (2, 3) C "UPPER(LAST_NAME)"

 (2, 4) C ""

 (2, 5) C "ASCENDING"

 (2, 6) C "MACHINE"

 (3, 1) C "EMPLOYEE_I"

 (3, 2) C "PRIMARY"

 (3, 3) C "EMPLOYEE_ID"

 (3, 4) C ""

 (3, 5) C "ASCENDING"

 (3, 6) C "MACHINE"

The form ShowATags.SCX in the conference materials lets you choose a tag and apply

ATagInfo() to it.

A change to the GetNextModified() function makes it easier to write your conflict resolution

code. By default, even though it doesn't actually write any data, GetNextModified() fires rules

regarding the uniqueness of indexes. A new, optional parameter lets you turn off the firing of

those rules, so that you can simply find all changed records and deal with them. As you deal with

them, of course, you'll have to handle conflicts in primary and candidate indexes, but the

appropriate time to do so is as you check the individual records for problems, not when you're

identifying them. Here's the updated syntax for GetNextModified():

nRecordNumber = GetNextModified(nStartRecord [, cAlias | nWorkarea

 [, lIgnoreRules]]

Here's another VFP 7 enhancements that comes in response to developer requests. The

VALIDATE DATABASE RECOVER command that lets you repair damaged databases is now

permitted in code, not just at the Command Window. Be aware that VALIDATE DATABASE

RECOVER isn't all that smart about fixing your database–usually, its solution is to simply

remove whatever piece is causing the trouble and clean up the traces. A better, long-term solution

for healthy databases is to use a third-party tool like the Stonefield Database Toolkit.

Resource Management
A number of the new and modified commands and functions make it easier to keep track of

what's going on in your application. Some of the changes either fix existing language elements or

make them more useful, while others add functionality.

One change that should make a lot of people happy is that the DISKSPACE() function finally

works consistently with drives greater than 2GB. The function has also been improved – it now

takes an optional parameter that lets you find out the total space on the drive. Omit the parameter

or pass 2 for the free space. Pass 1 for total space. For example:

? DISKSPACE("C") && 2053126144

? DISKSPACE("C", 1) && 3249307648

? DISKSPACE("C", 2) && 2053126144

Be aware that, for a sufficiently large disk, DISKSPACE()'s return value is in scientific notation.

The OS() function, which tells you what operating system you're running, now provides a lot of

other information as well. Table 1 shows the parameters you can pass to OS() and the

information it returns.

Table 1 Parameters for OS() – This function has been significantly enhanced in VFP 7. All

return values are character, even those identified as numbers.

Parameter Return Value

Omitted

or 1

Operating system version, that is, Windows version.

2 Is double-byte character support available? If so, returns "DBCS"; if not, returns the

empty string.

3 Operating system major version number.

4 Operating system minor version number.

5 Operating system build number.

6 Operating system platform (distinguishes Win95/98/ME from WinNT/2000/XP).

7 Operating system service pack.

8 Operating system service pack number.

9 Operating system service pack minor version number.

10 Bit flags to identify product suites available on the operating system, such as Small

Business Server, Windows 2000 Advanced Server and so forth.

11 Additional information about the operating system. Currently, this value is only

informative for Windows 2000, where it indicates which version is installed.

Table 2 shows the returns values for OS() on two machines: one running Windows 2000 Pro

Service Pack 1 with US English, OS(), and the other running Windows XP Pro with US English

and Terminal Services installed.

Table 2 OS() return values – The return values for OS() depend on the version of

Windows, the Service Pack, the language support installed, and other factors.

Call Return value - Windows 2000 Pro SP1 Return value - Windows XP Pro

? OS() "Windows 5.00" "Windows 5.01"

? OS(1) "Windows 5.00" "Windows 5.01"

? OS(2) "" ""

? OS(3) "5" "5"

? OS(4) "0" "1"

? OS(5) "2195" "2600"

? OS(6) "2" "2"

? OS(7) "Service Pack 1" ""

? OS(8) "1" "0"

? OS(9) "0" "0"

?

OS(10)

"0" "256"

?

OS(11)

"1" "1"

Two changes make it easier to work with dynamic link libraries (DLLs). First, in previous

versions, the CLEAR DLLS command was an all-or-nothing affair. While you could DECLARE

functions individually, you could only clear them all from memory at the same time. VFP 7 adds

the capability to clear individual functions by specifying the name of the function or the alias you

assigned it when you declared it. Here's an example:

DECLARE INTEGER GetSystemDirectory ;

 IN Win32api AS GetSysDir;

 STRING @cWinDir, ;

 INTEGER nWinDirLength

DECLARE DOUBLE GetSysColor ;

 IN Win32API;

 INTEGER nIndex

* Now do something with these

* Now clean these up without releasing other DLL functions

CLEAR DLLS GetSysDir, GetSysColor

The new ADLLS() function lets you check what DLL functions have been declared. In VFP 6

and older versions, the only way to get this information was by parsing the output of LIST

STATUS.

Like the other "A" functions, ADLLS() stores its results in an array. This one has three columns.

The first column contains the actual name of the function, the second its alias and the third has

the name of the library containing the function. Note that, even if the function was declared using

the IN WIN32API syntax, ADLLS() lists the actual library that contains the function. Here's an

example that assumes we've issued the same declarations as in the previous example (the output

has been slightly reformatted to fit the page):

ADLLS(aDeclaredDLLS)

LIST MEMORY LIKE aDeclaredDLLS

ADECLAREDDLLS Pub A

 (1, 1) C "GetSysColor"

 (1, 2) C "GetSysColor"

 (1, 3) C "C:\WINNT\system32\USER32.DLL"

 (2, 1) C "GetSystemDirectory"

 (2, 2) C "GetSysDir"

 (2, 3) C "C:\WINNT\system32\KERNEL32.DLL"

ShowDLLs.SCX in the conference materials demonstrates both new capabilities.

Another new "A" function in VFP 7 is ASessions(), which fills an array with a list of the existing

data sessions. Each array element contains the number of the data session. Executing ASessions()

is simple. Here's an example:

nActiveSessions = ASessions(aActiveSessions)

Although, at first glance, the function would appear to give you an array where element 1

contains 1, element 2 contains 2, and so forth, that's not actually the case. Since data session

numbers are assigned at the time at which forms and reports are instantiated and do not change

once a form or report exists, it's possible to have holes in the sequence. Also, since available data

sessions are reused (after a form or report is closed), it's possible for the list to be out of order.

Run the form ShowSessions.SCX in the conference materials for a demonstration of this issue

and the new function.

A more interesting question is how you would use the array created by ASessions(). The function

makes it easier to write generic shut down code that handles outstanding changes. Code along

these lines is useful both for forcing a shutdown and for handling those situations where you

have abandoned data sessions, a problem that can occur due to errors or to dangling pointers.

* Table handling portion of generic shutdown code

* This version reverts all changes.

#DEFINE DB_BUFOFF 1

LOCAL nCurrentSession, nActiveSessions, nSession, nCursors, nCursor

nCurrentSession = SET("DATASESSION")

nActiveSessions = ASESSIONS(aActiveSessions)

FOR nSession = 1 TO nActiveSessions

 * Switch to this session

 SET DATASESSION TO aActiveSessions[nSession]

 nCursors = AUSED(aCursors)

 FOR nCursor = 1 TO nCursors

 * Process each open cursor

 SELECT (aCursors[nCursor, 1])

 IF CURSORGETPROP("Buffering") <> DB_BUFOFF

 * If it's buffered, revert all changes

 TABLEREVERT(.T.)

 ENDIF

 ENDFOR

ENDFOR

SET DATASESSION TO nCurrentSession

There are times when you want to show the user a filename with its path, but the path is so long

that it doesn't fit into the available space. The new DisplayPath() function solves this problem.

Pass it a filename and length and it returns a shortened version of the filename, no longer than the

specified length. Entire directories are removed from the path and an ellipsis (…) is substituted

for them. The example here is a perfect case for the function, in fact. The path for the filename to

be shortened is so long that it wraps onto a second line.

? DisplayPath("C:\WINNT\PROFILES\TAMAR\APPLICATION

DATA\MICROSOFT\TEMPLATES\NORMAL.DOT", 40)

c:\...\microsoft\templates\normal.dot

Note that the result may be shorter than the specified length, since it always cuts off at a folder.

In the example, the result string is 37 characters.

The ADIR() function, which fills an array with a list of files and/or directories, has been in

FoxPro for a long time, but since the advent of 32-bit operating systems, it's had some

weaknesses. The addition of a new parameter in VFP 7 addresses those shortcomings. The

optional fourth parameter, nFlags, lets you specify whether file and directory names should be in

capital letters (the default and the old behavior) or should reflect the actual case used. It also lets

you request the DOS 8.3 names for files and folders. You can combine these two behaviors, if

you wish, since the parameter, like other flags is additive. Add 1 for original case and add two for

DOS 8.3 names.

One of the trickier things developers have had to do with VFP is figure out the actual size of the

usable screen area, that is, the whole VFP area less the space taken up by the menu, the status bar

and any docked toolbars. VFP 7 makes this much easier. The Height and Width properties of

_SCREEN now reflect that interior space, while the properties of _VFP continue to show the

entire area taken up by VFP.

On one of my systems, with the standard toolbar docked under the menu and the status bar on,

these values are returned:

?_VFP.Height && 733

?_VFP.Width && 893

?_SCREEN.Height && 624

?_SCREEN.Width && 885

If I undock the toolbar, the values for _VFP don't change, but _SCREEN.Height returns 653.

Docking the toolbar at the side changes _SCREEN.Width to 850, but none of the other values

change.

Array Handling
In addition to the new functions that return arrays (ATagInfo(), ASessions(), ADLLs()), there are

several changes to array-handling functions in Visual FoxPro 7, plus one big change regarding

arrays that affects functions in general.

First, the big change. It's now possible to return an array from a function. In older versions of

VFP, the return value from a function had to be a scalar (non-array). In VFP 7, a function can

return an array, provided the array is still in scope when the function is done. What this means in

practice is that this ability is really limited to methods returning arrays that are properties. In this

example (found in Colors.PRG in the conference materials), the class has an array property called

aRGB. The method RGBComp accepts a color as a parameter and returns an array containing the

red, green and blue components of the color. (It mimics the behavior of the RGBComp function

in FoxTools, except for the way it returns the values.)

DEFINE CLASS Colors AS Custom

* Color handling code

DIMENSION aRGB[3]

FUNCTION RGBComp(nColor) AS Array

* RGBComp

* Returns the Red, Green and Blue Components

* of a color in an array

This.aRGB[1] = -1

This.aRGB[2] = -1

This.aRGB[3] = -1

IF VARTYPE(nColor)="N"

 This.aRGB[3] = INT(nColor/(256^2))

 nColor = MOD(nColor,(256^2))

 This.aRGB[2] = INT(nColor/256)

 This.aRGB[1] = MOD(nColor,256)

ENDIF

RETURN @This.aRGB

ENDDEFINE

Note that you have to precede the returned array with "@", the same way that you pass a

parameter by reference.

To use the method, first we need to instantiate the class, of course:

oColors = NewObject("Colors", "Colors.PRG")

Then, we can call the method and store the return value in an array. If the array doesn't exist, it's

created (with private scope). If it exists, but has the wrong dimensions, it's redimensioned:

aResult = oColors.rgbcomp(255)

Two of FoxPro's array-handling functions have been modified in VFP 7 to make them more

useful. Both ASCAN() and ASORT() now have the ability to ignore case. ASCAN() has several

other new features: you can now choose whether it does an exact search (in the SET EXACT

sense); you can limit the search to a specific column; and you can tell it to return the row number

rather than the element number in a two-dimensional array. These changes have all been

requested by the VFP developer community over the years.

Let's look at the syntax and some examples. We'll take ASORT() first because it has changed

less. The function has a new (fifth) parameter, nFlags, used to specify whether or not the sort is

case-sensitive. If this parameter is omitted or 0, the sort is case-sensitive, as in older versions of

FoxPro. If the parameter is 1, the sort is case-insensitive. (Of course, since this parameter is

called nFlags, it's possible that additional flags will be added to it in future. See the discussion of

ASCAN() below to see how flag values are added to combine choices.)

This query creates an array that we can work with. It pulls the first names out of the TasTrade

Employee table three times, taking each one in its regular form, in lower-case and in upper-case.

SELECT First_Name FROM _SAMPLES+"TasTrade\Data\Employee";

UNION ;

SELECT LOWER(First_Name) FROM _SAMPLES+"TasTrade\Data\Employee" ;

UNION ;

SELECT UPPER(First_name) FROM _SAMPLES+"TasTrade\Data\Employee" ;

INTO ARRAY aNames

Here's part of the results from calling ASORT() without the new flag:

ANAMES Pub A

 (1, 1) C "ALBERT "

 (2, 1) C "ANDREW "

 (3, 1) C "ANNE "

 (4, 1) C "Albert "

 (5, 1) C "Andrew "

 (6, 1) C "Anne "

 (7, 1) C "CAROLINE "

 (8, 1) C "Caroline "

 (9, 1) C "JANET "

 (10, 1) C "JUSTIN "

 (11, 1) C "Janet "

 (12, 1) C "Justin "

 (13, 1) C "LAURA "

 (14, 1) C "LAURENT "

 (15, 1) C "Laura "

 (16, 1) C "Laurent "

Note that none of the lower-case names are shown here. They're all clustered at the end of the

listing.

To use the new flag, but not specify a start position or number of elements, pass –1 for the

second and third parameters. Here's the call needed to get aNames properly sorted:

ASORT(aNames, -1, -1, 0, 1)

Here's a partial display of the results. Note that within each group, there's no predicting which

version of the name comes first. The function sees "ANDREW", "Andrew" and "andrew" as

identical.

ANAMES Pub A

 (1, 1) C "ALBERT "

 (2, 1) C "albert "

 (3, 1) C "Albert "

 (4, 1) C "ANDREW "

 (5, 1) C "Andrew "

 (6, 1) C "andrew "

 (7, 1) C "anne "

 (8, 1) C "ANNE "

 (9, 1) C "Anne "

 (10, 1) C "CAROLINE "

 (11, 1) C "caroline "

 (12, 1) C "Caroline "

 (13, 1) C "Janet "

 (14, 1) C "janet "

 (15, 1) C "JANET "

 (16, 1) C "Justin "

 (17, 1) C "JUSTIN "

 (18, 1) C "justin "

 (19, 1) C "laura "

 (20, 1) C "Laura "

 (21, 1) C "LAURA "

 (22, 1) C "Laurent "

 (23, 1) C "LAURENT "

 (24, 1) C "laurent "

ShowASort.SCX in the conference materials lets you experiment with ASORT().

ASCAN() has two new parameters. The added fifth parameter is nSearchColumn – it indicates

which column to search. You can combine it with the parameters for start position and number of

elements to search only particular elements within a specific column. Alternatively, you can

specify –1 for both the start position and number of elements to search the entire specified

column.

To set up our example, this line creates an array containing information about the persistent

relations in the TasTrade database:

ADBOBJECTS(aRelns,"RELATION")

The array has five columns: the first is the name of the child table in the relation and the second

is the name of the parent table. The third and fourth columns contain the names of the tags used

to maintain the relation in the child and parent tables, respectively. The final column indicates the

type of relational integrity for that relation.

If we want to find relations involving a particular table as child, we need to make sure we search

only the first column. For example, this call finds the first relation involving the Products table as

a child:

? ASCAN(aRelns, "PRODUCTS", -1, -1, 1) && displays 16

The new sixth parameter, nFlags, lets us improve that search in several ways. In VFP 7, nFlags

has four, additive, bit values, as shown in Table 3.

Table 3 ASCAN() flags – Add the values shown together to create the nFlags parameter.

Bit Value Meaning

0 0 Search is case-sensitive. Default.

0 1 Search is case-insensitive.

1 0 Exact is off. Effective only when Bit 2 is set (4).

1 2 Exact is on. Effective only when Bit 2 is set (4).

2 0 Current SET EXACT setting applies.

2 4 Use the exactness setting from Bit 1.

3 0 Return the element number of the matching item.

3 8 Return the row number of the matching item, if this is a two-dimensional array.

Returning to the previous example, we can try several changes. The most useful is getting the

row number rather than the element number:

? ASCAN(aRelns, "PRODUCTS", -1, -1, 1, 8) && displays 4

We also might not want to worry about the case of the data in the array, so we can add the flag

for case-insensitivity to the flag for returning the row number:

? ASCAN(aRelns, "PRODUCTS", -1, -1, 1, 9) && displays 4

The flags for dealing with exact matches are a little confusing. It doesn't matter which value you

pass for bit 1, unless you also add 4 for bit 2. This gives you the option of either following the

current SET EXACT setting or overriding it for the search. Add 4 to nFlags to make sure you

search with EXACT off; add 6 to force ASCAN() to search with EXACT on. No matter which

value you pass, it doesn't affect anything outside the single ASCAN().

Date Handling
A couple of changes provide improvements related to dealing with dates. The new QUARTER()

function takes a date and tells you which quarter of the year it falls in. You can specify a starting

month for the year to handle fiscal years rather than calendar years. For example:

? QUARTER({^ 2000-9-23})

returns 3, since September 23 is in the third quarter. But, if you specify a year beginning July 1,

like this:

? QUARTER({^ 2000-9-23}, 7)

the function returns 1, instead.

SET("CENTURY") has a new option. When you pass 3 as the second parameter, it returns the

maximum rollover date as set in the Regional Options Applet in the Control Panel. This option is

available only in Windows 98 and later. In earlier versions, SET("CENTURY", 3) returns -1.

Improved User Interface Tools
There are a number of changes related to building user interfaces. They can be broken into two

categories, those related to controls and those related to other input mechanisms.

Control Improvements

Several of the changes to controls provide the flat look popularized by Windows 2000 and Office

2000. Many controls have a new "Hot Tracking" setting (2) for SpecialEffect that makes them

flat except when the mouse passes over them. At that point, depending on the particular control,

they become either raised or depressed. For some controls, the Hot Tracking setting works only

when Style is set to Graphical.

All controls have new MouseEnter and MouseLeave events that give you the opportunity to take

action as the mouse passes through the control. These events take the same parameters as

MouseMove: the mouse button or buttons that are currently pressed; which, if any, of the Ctrl,

Shift and Alt keys is pressed; and the current mouse position.

CommandButtons have a new VisualEffect property, available only at runtime, that lets you raise

or depress that button. By manipulating this property in the MouseEnter and MouseLeave

methods, you can build your own Hot Tracking effect.

The form in Figure 1 demonstrates the new SpecialEffect setting, the MouseEnter and

MouseLeave events, and the VisualEffect property, as well as a number of other interface

changes, described in the next section. The form is included as UIChanges.SCX in the

conference materials.

Figure 1 What's New in Formland? – This form demonstrates a few of the changes to

controls and other input techniques, including the new MouseEnter and MouseLeave

events, the VisualEffect property for buttons, and the new Hot Tracking setting for the

SpecialEffect property.

A couple of changes to grids address long-time enhancement requests. A WordWrap property has

been added to the Header object, so that headers can occupy more than one line. In the form in

Figure 2 (included in the conference materials as GridSample.SCX), WordWrap is .T. for the

header in the first column and .F. for the other headers.

Figure 2 New grid features – Column headers now have the ability to wrap as needed. In

addition, you can now find out whether it was a row change or a column change that

caused BeforeRowColChange or AfterRowColChange to fire.

 Ever since Visual FoxPro 3.0, developers have wondered why the BeforeRowColChange and

AfterRowColChange events weren't divided into separate BeforeRowChange, BeforeColChange,

AfterRowChange and AfterColChange events. While VFP 7 doesn't go quite that far, the new

RowColChange property does make it easy to know why the two events fired. It contains a value

that indicates what changed: the row (1), the column (2), both (3) or neither (4). In the form

shown in Figure 2, AfterRowColChange displays a message box showing what fired it. Here's the

code:

LPARAMETERS nColIndex

#DEFINE MB_ICONINFORMATION 64 && Information message

LOCAL cWhatChanged

DO CASE

CASE This.RowColChange = 0

 cWhatChanged = "nothing has"

CASE This.RowColChange = 1

 cWhatChanged = "row only has"

CASE This.RowColChange = 2

 cWhatChanged = "column only has"

CASE This.RowColChange = 3

 cWhatChanged = "row and column have"

ENDCASE

MESSAGEBOX("In AfterRowColChange - " + cWhatChanged + " changed", ;

 "Grid Information",MB_ICONINFORMATION)

RETURN

Another new property that cuts down on the code you need to write is hWnd, which has been

added to forms and toolbars. This property always contains the window handle of the form or

toolbar. It can be used in Windows API functions. In older versions, you need to make a couple

of function calls to get this information. Figure 3 shows a form that passes its hWnd to an API

function and changes itself to a circle. The code for the form (as exported by the Class Browser)

is shown below. (Thanks to David Frankenbach for showing me this technique.) This form is

available in the conference materials as MkCircle.SCX.

Figure 3 Getting a handle on a form – This form passes its Windows' handle to the API

function SetWindowRgn in order to change the form into a circle.

PUBLIC ofrmcircle

SET CLASSLIB TO d:\fox\testcode\vfp6test\controls\forms.vcx ADDITIVE

ofrmcircle=NEWOBJECT("frmcircle")

ofrmcircle.Show

RETURN

DEFINE CLASS frmcircle AS frmform

 Height = 400

 Width = 400

 DoCreate = .T.

 AutoCenter = .T.

 BorderStyle = 0

 Movable = .F.

 TitleBar = 0

 BackColor = RGB(0,0,255)

 Name = "frmCircle"

 PROCEDURE Init

 LOCAL nhWnd, nWidth, nHeight, nRegion

 DECLARE INTEGER CreateEllipticRgn IN gdi32 ;

 INTEGER X1 , INTEGER Y1 , INTEGER X2 , INTEGER Y2

 DECLARE INTEGER SetWindowRgn IN user32 ;

 INTEGER HWND, INTEGER hRgn , INTEGER bRedraw

 nhWnd = This.HWnd

 nWidth = This.WIDTH / 1 && change ratio

 nHeight = This.HEIGHT / 1 && change ratio

 nRegion = CreateEllipticRgn(0, 0, nWidth, nHeight)

 SetWindowRgn(nhWnd, nRegion, 1)

 ENDPROC

 PROCEDURE DblClick

 ThisForm.Release()

 ENDPROC

ENDDEFINE

In line with the other changes to _SCREEN, note that _VFP and _SCREEN both have an hWnd

property, but they contain different values.

Other UI Enhancements

Not all interaction occurs through forms and controls. There are a variety of other ways to

communicate with users and some of the changes in VFP 7 impact those approaches.

FoxPro's menus have been enhanced to keep up with the latest interaction techniques. The

DEFINE BAR command has several new clauses. PICTURE and PICTRES let you add pictures

to menu items. With PICTURE, you specify a file, including path. With PICTRES, you specify

the bar number for an item from the FoxPro system menu and the graphic associated with that

item is used. In order to use graphics, the menu popup containing the bar must be defined with

the MARGIN clause.

INVERT allows you to make a bar appear with a lighter background and as though it were

depressed. This is the way the lesser-used items in the Office applications appear (when they

appear at all).

The final new clause is the most complex because you need to write code to make it useful. MRU

stands for "most recently used." When you add this clause to a bar, the bar appears as a chevron

character pointing downwards and implies that the menu can be expanded. When the user hovers

the mouse over that item or clicks on it, you can respond by adding menu items (or any other

code you want to run). Presumably the items you add will be inverted; otherwise, they'd have

been displayed initially.

This program creates a new menu pad on the system menu with three items. The first two have

pictures associated with them. The third is an MRU item. When the user chooses the MRU item,

a separate program is called that changes the menu popup. First, here's the program that creates

the menu pad and popup initially:

* MRUMenu.PRG

* Create a menu with an MRU item.

DEFINE PAD MRUSample of _MSYSMENU prompt "MRU Demo"

DEFINE POPUP MRUpop MARGIN RELATIVE

ON PAD MRUSample of _MSYSMENU activate POPUP MRUPop

DEFINE BAR 1 of MRUPop Prompt "End MRU Demo" picture HOME() + "Fox.BMP"

DEFINE BAR 2 of MRUPop prompt "Second" pictres "_mfi_save"

DEFINE BAR 3 of MRUPop mru

ON SELECTION BAR 1 OF MRUPop DO ReleaseMRU

ON SELECTION BAR 2 OF MRUPop WAIT WINDOW "Not really saving anything"

ON SELECTION BAR 3 of MRUPop do ChgMRUPop

Now here's ChgMRUPop, called when the user chooses the MRU item. It modifies the popup,

reactivates it, then after the user makes a choice, restores the menu to its original state:

* ChgMRUPop.Prg

* Change the contents of MRUPop menu popup

* in response to the MRU choice

* Remove the MRU bar

RELEASE BAR 3 of MRUPop

* Add the new bars

DEFINE BAR 3 of MRUPop prompt "New Third Bar" INVERT AFTER 1

DEFINE BAR 4 of MRUPop prompt "Fourth" INVERT

ON SELECTION BAR 3 OF MRUPop WAIT WINDOW "Hey! This works."

ON SELECTION BAR 4 OF MRUPop WAIT WINDOW "Even the new one at the bottom

works"

* Reactivate the popup

ACTIVATE POPUP MRUPop

* After the user makes a choice, clean up

* Remove the added bars

RELEASE BAR 3 of MRUPop

RELEASE BAR 4 of MRUPop

* Need to redefine the MRU bar

DEFINE BAR 3 of MRUPop mru

ON SELECTION BAR 3 of MRUPop do ChgMRUPop

Finally, here's the ReleaseMRU program that cleans up the menu when the user choose the End

MRU Demo choice.

* ReleaseMRU.PRG

* Clean up MRUMenu

RELEASE POPUP MRUpop

RELEASE PAD MRUSample of _MsysMenu

Figure 4 shows the menu as it first appears, while Figure 5 shows the expanded menu.

Figure 4 Menu enhancements – This menu popup shows both pictures for menu bars and

the MRU menu item.

Figure 5 Menu expansion – You can write code to respond to the MRU item to add bars to

the menu. The new INVERT clause provides the ability to have bars that are set back and

dimmed.

Both kinds of pictures can be specified in the Menu Designer. However, the MRU and INVERT

options can't be handled directly through the Designer. (It is possible to trick the Menu Designer

into adding these options by including them in the SKIP FOR clause.)

VFP has long provided a Windows standard way for communicating messages to users with the

MessageBox() function. In this version, the function gains a timeout parameter plus the ability to

automatically convert the message to character. The latter means that you can now pass dates or

numbers without needing to run them through TRANSFORM() or another conversion function.

Of course, when creating a complex message from data of multiple types, it's still necessary to

convert all the data to character before concatenating it.

The new timeout parameter means that you can display a message box until either the user

dismisses it or time runs out. The timeout period is measured in milliseconds. If the box is

cleared due to timeout, the function returns –1. Here's an example:

nResult = MessageBox("Don't you hate monolog boxes?",32+0,;

 "Demonstrate timeout",2000)

This message is displayed for two seconds unless the user chooses the OK button first. Figure 6

shows the dialog.

Figure 6 Message box with timeout – The MessageBox() function has a new timeout

parameter that lets you clear the dialog after a specified time.

A new function that's sort of a cousin to MessageBox() is for those situations where you need just

a single input from a user and implementing a whole form to get it seems like overkill. The

function is called InputBox() and what it does is give you access to the same dialog that VFP

uses to get view parameters. InputBox() accepts five parameters as follows:

cInput = InputBox(cPrompt [, cCaption [, cDefault [, nTimeOut

 [, cTimeoutValue]]]])

For example:

cUserName = InputBox("Enter UserName", "Tamar's Application","",10000,;

 "***No entry***")

Figure 7 shows the resulting dialog. As the syntax shows, the function always returns a character

value.

Figure 7 Easy input – The new InputBox() function makes it simple to collect single input

values.

The form in Figure 1 includes buttons that demonstrate the changes to MessageBox() and a

button that demonstrates InputBox().

Two functions that display system dialogs have been updated. GetFont() now has the ability to

indicate the character set for the chosen font. In order to avoid breaking existing code, the

function includes the character set number in the return value only if a value is passed for the

optional nCharacterSet parameter. When that parameter is passed, the Script dropdown in the

Font dialog is enabled. Figure 8 shows the dialog produced by this call:

? GETFONT("Tahoma",24,"",1)

Figure 8 Choosing fonts – The new nCharacterSet parameter for GetFont() lets you enable

the Script dropdown, so users can choose the appropriate character set.

If the user just clicks OK in Figure 8, the return value is:

"Tahoma,24,N,1"

The changes to the GETDIR() function are much more significant. First, in some circumstances,

the function uses a treeview to display the drive and directory hierarchy, rather than the nested

folders used in VFP 6 and earlier versions.

Second, three new parameters have been added. If any of these parameters are passed, the

treeview version of the dialog is used. The new syntax is as follows:

cDirectory = GETDIR([cStartDir [, cPrompt [, cDialogCaption

 [, nFlags [, lRootOnly]]]]])

As its name suggestions, the new cDialogCaption parameter lets you specify text that appears on

the dialog's title bar. The nFlags parameter lets you specify 0 or more additive flags. They work

like the flags for ASCAN() – choose the ones you want and add them together to get the single

nFlags parameter. Table 4 shows the flag values – some of them are only meaningful in newer

versions of Windows. The lRootOnly parameter indicates whether the treeview should stop at the

root of the specified drive (when it's .T.) or continue upward (the default, .F., setting).

Table 4 GETDIR() flags – Choosing a directory is more configurable than ever. Add these

flag values together for the fourth parameter to GETDIR(). Some of these values make it

possible to use GETDIR() to choose a printer or another computer rather than a directory.

Flag

value

Meaning

1 Only return directories that are part of the file system. If the user selects folders that are

not part of the file system, the OK button is disabled.

2 Do not include network folders below the domain level in the tree.

8 Only return file system ancestors. If the user selects anything other than a file system

ancestor, the OK button is disabled.

16 Include an edit control for the user to type the name of an item. (Only available in

some versions of Windows.)

64 Use the new user interface. (Only supported in Windows 2000 and above.)

4096 Only return computers. If the user selects anything other than a computer, the OK

button is disabled.

8192 Only return printers. If the user selects anything other than a printer, the OK button is

disabled.

16384 Display files as well as directories. (Only available in some versions of Windows.)

CD ? uses the same new dialog as GETDIR(), though it doesn't offer all the new options.

The final user interface related change is one that FoxPro developers have been requesting for

many, many versions. For a very long time, the _DBLCLICK system variable has controlled two

different things. As its name suggests, it determines how long can elapse between clicks and still

have the sequence considered a double-click. However, the same variable has also been used to

determine the speed at which a user must type to have incremental search in combo boxes. In

VFP 7, these two items have finally been separated and incremental search speed is now

controlled by the new _INCSEEK system variable.

OOP Language
In addition to the various changes to controls described earlier, there are a couple of other

changes to VFP's object-oriented language. First, the DEFINE CLASS command has been

extended to allow you to include the class library of the class being subclassed. The new syntax

for the DEFINE CLASS line is:

DEFINE CLASS ClassName AS ParentClass [OF ClassLibrary]

The advantage of this format is that you don't need to issue SET CLASSLIB or SET

PROCEDURE before the class is instantiated. The class library can (and usually should) include

a path and can be surrounded by quotes (for example, when the path includes spaces).

The AMEMBERS() function provides additional information, both for native VFP objects and

for COM objects. The new value 3 for the third parameter indicates that the function should

return a four-column array – the contents of the columns are shown in Table 5.

Table 5 What's in an object? – Calling AMEMBERS() with 3 as the third parameter

returns a four-column array, with these contents.

Column Contents

1 Name of the property, event or method

2 Type of item. For VFP objects, the possible values are "Property", "Event" or

"Method". For COM objects, the possible values are "PropertyPut", "PropertyGet",

"PropertyPutRef" and "Method".

3 Empty for properties of VFP objects. For methods of VFP objects, the parameter list.

For properties and methods of COM object, the member's signature, consisting of the

parameter list, plus the return value.

4 The help string for the item.

AMEMBERS() has also acquired a cFlags parameter that lets you specify which members to

return, for native objects. Table 6 lists the flag characters. The flags in each filter group are

mutually exclusive. However, by default, when you concatenate multiple flag characters into the

cFlags parameter, they're combined with OR, so a cFlags parameter of "HP" includes all hidden

and protected PEMs. Passing "GU" includes all members that are either public or user-defined in

the result.

Table 6 Choosing members – AMEMBERS() new, fourth, parameter lets you filter the list

of members returned.

Flag

character

Filter group Meaning

P Visibility Protected

H Visibility Hidden

G Visibility Public

N Origin Native PEMs

U Origin User-defined

PEMs

I Inheritance Inherited PEMs

B Inheritance Base PEMs

C Changed Changed

R Read-only Read-only

There are two special flags. Including the "+" anywhere in the cFlags parameter indicates that the

filters should be combined with AND rather than OR. So, for example, passing "GU+" includes

only members that are both public and user-defined.

The second special flag is "#", which adds a column to the resulting array. The new column

shows the flags that apply to each member. The "#" flag can't be passed alone-you need to

include at least one other flag with it; if you want just to add the column, pass "+#".

Here's an example of both of the new features. This code creates an instance of the _MoverLists

class from the FoxPro Foundation Classes, then lists the Protected members of the class,

including their flags:

oObject = NewObject("_MoverLists",HOME()+"FFC_CONTROLS")

AMEMBERS(aMemberList, oObject, 3, "P#")

LIST MEMORY LIKE aMemberList

AMEMBERLIST Pub A

 (1, 1) C "ADDTOPROJECT"

 (1, 2) C "Method"

 (1, 3) C ""

 (1, 4) C "Dummy code for adding files to project."

 (1, 5) C "CPUI"

 (2, 1) C "NINSTANCES_ACCESS"

 (2, 2) C "Method"

 (2, 3) C ""

 (2, 4) C "Access method for nInstances property."

 (2, 5) C "CPUI"

 (3, 1) C "NINSTANCES_ASSIGN"

 (3, 2) C "Method"

 (3, 3) C "vNewVal"

 (3, 4) C "Assign method for nInstances property."

 (3, 5) C "CPUI"

 (4, 1) C "NOBJECTREFCOUNT_ACCESS"

 (4, 2) C "Method"

 (4, 3) C ""

 (4, 4) C "Access method for nObjectRefCount property."

 (4, 5) C "CPUI"

 (5, 1) C "NOBJECTREFCOUNT_ASSIGN"

 (5, 2) C "Method"

 (5, 3) C "m.vNewVal"

 (5, 4) C "Assign method for nObjectRefCount property."

 (5, 5) C "CPUI"

This example includes all members for the class (because all three visibilities are listed), but also

includes the flags. Only a portion of the output is shown.

AMEMBERS(aMemberList, oObject, 3, "GPH#")

LIST MEMORY LIKE aMemberList

AMEMBERLIST Pub A

 (1, 1) C "ACTIVECONTROL"

 (1, 2) C "Property"

 (1, 3) C ""

 (1, 4) C "References the active control on an object."

 (1, 5) C "GRNI"

 (2, 1) C "ADDOBJECT"

 (2, 2) C "Method"

 (2, 3) C "cName, cClass"

 (2, 4) C "Adds an object to a container object at run time."

 (2, 5) C "GNI"

 (3, 1) C "ADDPROPERTY"

 (3, 2) C "Method"

 (3, 3) C "cPropertyName,eNewValue"

 (3, 4) C "Adds a new property to an object."

 (3, 5) C "GNI"

 (4, 1) C "ADDTOPROJECT"

 (4, 2) C "Method"

 (4, 3) C ""

 (4, 4) C "Dummy code for adding files to project."

 (4, 5) C "CPUI"

 (5, 1) C "AOBJECTREFS"

 (5, 2) C "Property"

 (5, 3) C ""

 (5, 4) C "Array of object references properties."

 (5, 5) C "GUI"

 (6, 1) C "BACKCOLOR"

 (6, 2) C "Property"

 (6, 3) C ""

 (6, 4) C "Specifies the background color used to display text

and graphics in an object."

 (6, 5) C "GNI"

The form ShowAMembers.SCX in the conference materials lets you experiment with

AMembers().

IDE Enhancements
Many of the most significant changes in VFP 7 are in the interactive development environment

(IDE). As in earlier versions, the programming language has been enhanced to support the IDE

changes. In addition to the new material, there are some language changes that support other,

previously existing, areas of the IDE.

Support for new features

Several new system variables point to the support programs and tables for new IDE features; in

addition, new functions provide programmatic support for new editor features. Table 7 shows the

new system variables that reference new features; you can change these to point to programs or

data you substitute for the ones provided with VFP.

Table 7 Finding new features – These new system variables point to new VFP applets and

the data for them. You can substitute your own, if you're so inclined.

Variable Default Value Meaning

_CodeSense HOME() + "FoxCode.App" The IntelliSense Manager

application

_FoxCode <WinDir> + "\Profiles\" + <User> +

"\<User Settings Dir>\Microsoft\Visual

FoxPro\FoxCode.DBF"

The IntelliSense data table

_FoxTask HOME() + "FoxTask.DBF" The Task List data table

_ObjectBrowser HOME() + "ObjectBrowser.APP" The Object Browser

application

_TaskList HOME() + "TaskList.APP" The Task List application

Along the same lines, the _VFP application object has two new properties, EditorOptions and

LanguageOptions, that let you control which of the new editing features are automatically

available. EditorOptions lets you manage the various Intellisense features, as well as drag and

drop between words and having hyperlinks created automatically. Even when these features are

turned off via EditorOptions, they can still be provided through the menu. LanguageOptions lets

you determine whether strict typing is enforced at runtime.

The new EDITSOURCE() and APROCINFO() functions let you take advantage of some other

new editing features. EDITSOURCE() opens the appropriate editor for a file, optionally

positioning at a specific point in the file. If you pass a file that belongs to one of the visual

designers, you must specify a line number. For example:

EditSource(HOME()+"FFC_CONTROLS.VCX",3,"_MoverLists","SelectAll")

EDITSOURCE() also ties into the new Task List tool. You can pass a shortcut id from the task

list and have the appropriate editor opened right at that shortcut.

APROCINFO() is a programmatic version of the new Document View. It fills an array with the

same kind of information that's provided by choosing Document View interactively. The function

lets you decide how much of the information you want to see. Here's the syntax:

nCount = AProcInfo(aArray, cFileName [, nWhichInfo])

The nWhichInfo parameter can take any of four values:

0 or omitted – include all document view information

1 – include only class definitions

2 – include only method information

3 – include only preprocessor directives, including #DEFINE

For example:

APROCINFO(aDefines, HOME()+"GENHTML.PRG", 3)

produces this result (shown only in part):

API Pub A

 (1, 1) C "VFP_DEFAULT_ID"

 (1, 2) N 32 (32.00000000)

 (1, 3) C "Define"

 (2, 1) C "M_CLASS_LOC"

 (2, 2) N 35 (35.00000000)

 (2, 3) C "Define"

 (3, 1) C "M_COULD_NOT_BE_INST_LOC"

 (3, 2) N 36 (36.00000000)

 (3, 3) C "Define"

 (4, 1) C "M_COULD_NOT_OPENED_EXCL_LOC"

 (4, 2) N 37 (37.00000000)

 (4, 3) C "Define"

 (5, 1) C "M_FILE_LOC"

 (5, 2) N 38 (38.00000000)

 (5, 3) C "Define"

 (6, 1) C "M_FILE_ALREADY_EXISTS_LOC"

 (6, 2) N 39 (39.00000000)

 (6, 3) C "Define"

 (7, 1) C "M_FILE_TYPE_LOC"

 (7, 2) N 40 (40.00000000)

 (7, 3) C "Define"

APROCINFO() works only on textual program files, not visual class libraries (VCX) or forms.

In VFP 7, many of the system windows can be docked. The WDOCKABLE() function lets you

find out, for any system window that can be docked, whether it's currently dockable. More than

that, it lets you change the window's dockability status. Pass just the window name to check its

status. Pass .T. or .F. for the second parameter to change the window's dockability. For example,

to make the Command Window dockable:

WDOCKABLE("Command", .T.)

The ALANGUAGE() function was added to aid in customizing IntelliSense. It fills an array with

various language components, based on the second parameter passed to it. Table 8 shows the

choices:

Table 8 Language components – ALANGUAGE() fills an array with different portions of

the VFP language, depending which of these values you pass it.

Second

parameter

Result

1 Create a one-dimensional array of commands

2 Create a two-dimensional array of functions, including the number of

parameters accepted. The second column may also contain the letter "M",

indicating that the whole name of the function must be used rather than a

shortened version.

3 Create a one-dimensional array of base classes.

4 Create a one-dimensional array of DBC events.

Here's an example, with only partial results shown:

ALANGUAGE(aFunctions, 2)

LIST MEMORY LIKE aFunctions

AFUNCTIONS Pub A

 (1, 1) C "ABS"

 (1, 2) C "1"

 (2, 1) C "ACLASS"

 (2, 2) C "2"

 (3, 1) C "ACOPY"

 (3, 2) C "2-5"

 (4, 1) C "ACOS"

 (4, 2) C "1"

 (5, 1) C "ADATABASES"

 (5, 2) C "1"

 (6, 1) C "ADBOBJECTS"

 (6, 2) C "2"

 (7, 1) C "ADDBS"

 (7, 2) C "1"

 (8, 1) C "ADEL"

 (8, 2) C "2-3"

 (9, 1) C "ADIR"

 (9, 2) C "1-4"

Updates to existing language

To aid tool developers and for consistency with other commands, MODIFY VIEW and MODIFY

PROCEDURE now support the NOWAIT clause that allows them to be opened

programmatically and remain open while execution continues.

The WriteMethod method has a new parameter that allows it to create methods on the fly. When

the method specified by the first parameter does not exist and the lCreateMethod parameter is

.T., the method is created. This approach works only at design-time and the form or class must be

saved after the method is added. These limitations are reasonable since WriteMethod is intended

for use in builders.

When project hooks were added in VFP 6, developers immediately found uses for them. But a

few features were missing. VFP 7 plugs those holes with three new events: QueryNewFile,

Activate and Deactivate. QueryNewFile fires when you begin the process of adding a file to a

project. Interactively, that's when you click the New button in the Project Manager. Previously,

no event fired when a new file was added.

The Activate and Deactivate events for the ProjectHook object are like those of other classes –

they fire when the object becomes active and when it loses focus. In the case of project hooks,

however, that happens when the project associated with the project hook is activated or

deactivated. This means we now have the ability to modify the VFP environment as we switch

between projects, offering the chance to change things like the VFP PATH, field mappings, and

other settings that are project-specific. However, beware-when the project is docked, Activate

and Deactivate don't fire.

When the ability to specify captions for fields was added in VFP 3, one simple thing got harder.

When you BROWSE a table, the captions are used instead of the field names. For a developer

who just wants a quick look at a table, this can be an annoyance. VFP 7 finally provides a quick

and easy solution with a NOCAPTIONS clause for BROWSE.

Using defined constants makes code far more readable and collecting them into include files

(also known as header or .h files), using the #INCLUDE directive or the Include File item on the

menu, is a powerful technique. But this technique has been difficult to use because the algorithm

used to search for include files specified with a relative path wasn't always intuitive. When the

file was recompiled, the header files couldn't always be found, causing compilation errors.

In VFP 7, the search path for include files has been expanded. For classes and forms, the search

order for include files is now:

Containing File + #INCLUDE filename (including relative path)

CURDIR() + #INCLUDE filename (including relative path)

SET PATH + #INCLUDE filename (including relative path)

The last two items are new. For programs, the new search order for include files is:

CURDIR + #INCLUDE filename (including relative path)

SET PATH + #INCLUDE filename (including relative path)

Containing File + #INCLUDE filename (including relative path)

Containing File + #INCLUDE filename only (no path)

VFP Root + #INCLUDE filename only (no path)

The third item is new.

Odds and Ends
One new function is an aid to debugging. ASTACKINFO() provides a complete listing of the

program stack at the time it's executed. It's similar to both the Call Stack window in the

Debugger and to SYS(16), but provides more information than either of those. The array it

creates has six columns, as shown in Table 9.

Table 9 Who's running? – ASTACKINFO() fills an array with information about all the

programs running at the time it's called.

Column Contents

1 Stack level, with 1 for the main program.

2 Name of the file containing the routine that's executing.

3 Name of the routine that's executing. Can be a procedure, function, or method. For a

method, the entry includes the object name.

4 Name of the source file containing the routine.

5 Line number within the file (not within the routine).

6 Source code

While ASTACKINFO() seems most appropriate for debugging, it's not restricted to that

environment, but can be used at any point to get a snapshot of the current execution situation.

The USE command has a new CONNSTRING clause that lets you pass a connection string for

use with a remote view. This provides a way to specify a userid and password at runtime rather

than at design-time. Be aware that the complete connection string must be specified, however, as

in SQLStringConnect().

Final Thoughts
The development team made changes in a tremendous number of areas in VFP 7. As in earlier

versions, many of them have the potential to truly improve the way we write code. Even better,

with this version, a lot of the changes come in response to developer requests. The challenge for

us is to assimilate this new material into our thinking, so that we can remember to use these

features when they're appropriate.

Thanks to Randy Brown of Microsoft for his help in preparing these notes.

Copyright, 2002, Tamar E. Granor, Ph.D.

